Representation of regular and irregular shapes in macaque inferotemporal cortex.

نویسندگان

  • Greet Kayaert
  • Irving Biederman
  • Rufin Vogels
چکیده

We determined the degree to which the response modulation of macaque inferior temporal (IT) neurons corresponds to perceptual versus physical shape similarities. IT neurons were tested with four groups of shapes. One group consisted of variations of simple, symmetrical (i.e. regular) shapes that differed in nonaccidental properties (NAPs, i.e. viewpoint-invariant), such as curved versus straight contours. The second and third groups were composed of, respectively, simple and complex asymmetrical (i.e. irregular) shapes, all with curved contours. A fourth group consisted of simple, asymmetrical shapes, but with straight (corners) instead of curved contours. The neural modulations were greater for the shapes differing in NAPs than for the shapes differing in the configuration of the convexities and concavities. Multidimensional scaling showed that a population code of the neural activity could readily distinguish the four shape groups. This pattern of neural modulation was strongly manifested in the results of a sorting task by human subjects but could not be predicted using current image-based models (i.e. pixel energies, V1-like Gabor-jet filtering and HMAX). The representation of shape in IT thus exceeds a mere faithful representation of physical reality, by emphasizing perceptually salient features relevant for essential categorizations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-latency category specific neural responses to human faces in macaque inferotemporal cortex

In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...

متن کامل

Short-latency category specific neural responses to human faces in macaque inferotemporal cortex

In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...

متن کامل

Pigeons and humans are more sensitive to nonaccidental than to metric changes in visual objects.

Humans and macaques are more sensitive to differences in nonaccidental image properties, such as straight vs. curved contours, than to differences in metric properties, such as degree of curvature [Biederman, I., Bar, M., 1999. One-shot viewpoint invariance in matching novel objects. Vis. Res. 39, 2885-2899; Kayaert, G., Biederman, I., Vogels, R., 2003. Shape tuning in macaque inferior temporal...

متن کامل

The representation of Kanizsa illusory contours in the monkey inferior temporal cortex.

Stimulus reduction is an effective way to study visual performance. Cues such as surface characteristics, colour and inner lines can be removed from stimuli, revealing how the change affects recognition and neural processing. An extreme reduction is the removal of the very stimulus, defining it with illusory lines. Perceived boundaries without physical differences between shape and background a...

متن کامل

Medial Axis Shape Coding in Macaque Inferotemporal Cortex

The basic, still unanswered question about visual object representation is this: what specific information is encoded by neural signals? Theorists have long predicted that neurons would encode medial axis or skeletal object shape, yet recent studies reveal instead neural coding of boundary or surface shape. Here, we addressed this theoretical/experimental disconnect, using adaptive shape sampli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 15 9  شماره 

صفحات  -

تاریخ انتشار 2005